MATHEMATICS ZONE







MATHEMATICS CHAPTER 4: MATRICES AND SYSTEMS OF LINEAR EQUATIONS

Operations on matrices

If A, B and C are matrices of the same order and 0 is the zero matrix, then

1.       A + B = B + A
2.       A + (B + A) = (A + B) + C
3.       A + 0 = 0 + A = A
4.       A + (-A) = 0 = (-A) + A


Properties of scalar multiplication

1.    If A and B are two matrices of the same order and k is a scalar, then k(A + B) = kA + kB
2.    If A is any matrix and k1, k2 are scalars, then
     i.      (k1 + k2)A = k1A + k2A
    ii.    k1(k2A) = k2(k1A) = (k1k2)A


Properties of matrix multiplication

1.     If A, B, C are m x n, n x k and m x k matrix respectively, then 
      A(B + C) = AB + AC
2.     If A is a zero matrix of order m x n, B is of order n x k, then AB = 0
3.     AB is not equals to BA since matric multiplication is not  commutative
4.     If A is a is a square matrix of order n x n and I is an identity matrix  of the same order, then     AI = IA = A.
5.    AB = 0 (Zero matrix) does not imply that A = 0 or B = 0
6.    Let A be a square matrix of  order n x n, then A2 is defined as AA
     In general, Am = A . A . ...A where m is any positive integer
     The law of exponents is valid for powers of matrices, that is
     ApAq = Ap+q, (Ap)q = Apq for p > 0, q > 0
7.    Let I be an identity matrix, then I = I2 = I= ... = In


Properties of transposition of matrix

1.(AT)T = A
2.(kA)T = kAT, k is a scalar
3.(A + B )T = AT + BT
4.(AB)T = BTAT


Determinant of matrices

Cofactor, cij = (-1)i+j Mij and Cij = Mij (if i + j is even) or -Mij (if i + j is odd) and
Mij is the minor of aij


Inverse of a matrix

Adjoint A, adj A = [cij]T

A-1 exists only when |A| is not equals to 0 (i.e. A is non-singular)

A-1 = (1/|A|) adj A


System of Linear Equation in Three Unknowns

The system of equations a11x + a12y + a13z = b1, a21x + a22y + a23y = b2, a31x + a32y + a33z = b3 can be expressed as a matrix equation, AX = B




MATHEMATICS CHAPTER 3: SEQUENCE AND SERIES

Arithmetic Progression (AP)

Arithmetic sequence: a, a + d, a + 2d, a + 3d, ..., a + (n-2)d, a + (n-1)d
The nth term, Tn = a + (n-1)d

Sum of nth term, 

Sn = (n/2)[2a + (n-1)d]

OR 

Sn = (n/2)(a + l)

*where l is the last term or l = a + (n-1)d


Geometric Progression (GP)

Geometris sequence: one in which the ratio (common ratio) of any term to its proceeding term is always the same

The nth term, Tn = arn-1

Sum of nth term,
When |r|<1, Sn = [a(1-rn)/(r-1)]
When |r|>1, Sn = [a(rn-1)/(r-1)]

Sum to infinity, Sinfinity = a/(1-r)


Binomial Theorem

Pascal's Triangle
1
1    1
1    2    1
1    3   3    1
1    4    6    4    1
1     5     10     5     1


Binomial coefficient, (nr) = n! / [r!(n-r)!]

Binomial theorem,
 (a + b)n = (n0)anb0 + (n1)an-1b1 + (n2)an-2b2 + ... + (nr)an-rbr + ... + (nn)a0bn

OR

(a + b)n = the sum of (nr) an-rbr

The (r + 1)th term of the expansion of (a + b)n is denoted by Tr+1, and called the general term, Tr+1 = (nr)an-rbr




MATHEMATICS CHAPTER 2: EQUATIONS, INEQUALITIES AND ABSOLUTE VALUES

Properties of Absolute Values

1.      |a| > 0
2.      |a| = |-a|
3.      |a+b| = |b+a|
4.      |a-b| = |b-a|
5.      |ab| = |a||b|
6.      |a/b| = |a|/|b|




MATHEMATICS CHAPTER 1: NUMBER SYSTEM


Converting rational numbers as a ratio

Example; Write 2.135... as a ratio of 2 integers
Solution; Let x = 2.135...
x = 2.135135135... - (1)
1000x = 2135.135135... - (2)
(2) - (1); 999x = 2133
x = 79/37

Complex Numbers (a + bi)

i  i
i2= -1

Conjugate

·         (a + bi) is (a - bi)
·         Used to change division of complex number into complex number only

Rules of Indices

1.      am x an = a(m+n)
2.      am / an = a(m-n)
3.      (am)n = amn
4.      (ab)m = am . bm
5.      a0 = 1
6.      a-n = 1/an,

Rules of Logarithms

1.      loga(mn) = logam + logan
2.      loga(m/n) = logam - logan
3.      logamn = nlogam
4.      logam = (logbm) / (logba)
5.      loga1 = 0
6.      logaa = 1
7.      alogan = n